
Journal of Statistical Physics, Vol. 97, Nos. 1�2, 1999

Uniqueness of Gibbs State for Nonideal Gas in Rd :
The Case of Pair Potentials

E. Pechersky1 and Yu. Zhukov1
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We consider a classical gas of particles in Rd interacting via a pair potential. We
prove that in a given region of the (;, +) plane, where ; is the inverse tem-
perature, and + is the chemical potential, either the Gibbs state is unique or it
does not exist. Our method uses a version of the well-known Dobrushin unique-
ness theorem adapted for lattice systems with a noncompact spin space and
proved by Dobrushin and Pechersky. The advantage of this version is that using
it one needs to check Dobrushin's contraction condition not for all boundary
configurations, but only for those that have spin values in some compact subset
of the spin space.

KEY WORDS: Gibbs state; Gibbs random field; uniqueness; specification;
configuration; classical gas; spin space.

INTRODUCTION

A series of works on Gibbs models of point field in Rd was published in the
end of 60s and in 70s (for example, see refs. 1, 2, 5, 6, and 8). Nevertheless,
it seems that even now there is no satisfactory theory of the Gibbs states
of the non-ideal classical gas. Of course, the main problem is still to find
examples of phase transitions in these models (see, however, refs. 9 and 10).
The uniqueness problem is also of a substantial interest.

In this work we describe the uniqueness region for states of particle
systems in Rd with pair interactions (Sections 1 and 2). Our aim is to show
the possibility of applying methods of Dobrushin, which can be found in
ref. 3. Namely, we use the general uniqueness theorem from ref. 4 (see
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Section 3 in this work). There are two Dobrushin results, relevant to this
problem (see ref. 3). The first one gives conditions which ensure the exist-
ence of at least one Gibbs field. The second Dobrushin theorem gives con-
ditions for the uniqueness of Gibbs field. The latter theorem claims that a
set of Gibbs fields corresponding to a specification is either empty or con-
tains a single Gibbs measure provided the Dobrushin uniqueness condi-
tions are satisfied. The theorem in ref. 4 gives similar uniqueness conditions
in the above sense as well. The difference is that ref. 4 contains the condi-
tions which work for noncompact spin spaces. The uniqueness conditions
in ref. 4 involve both Dobrushin conditions from ref. 3 with some modifica-
tions.

The theorem in ref. 4 is proven for lattice models on Zd. To apply this
theorem to continuous models in Rd, we reduce such a continuous model
to an equivalent one on Zd by appropriate partitions of Rd into cubes
(Section 4). We study the case of pair potentials. However, the method
allows to extend the result to multi-body interactions. We restrict our con-
sideration to the case of finite range interactions because the general
theorem in ref. 4 is proven for this case only. Figure 1 shows the uniqueness
region that we obtain.

In ref. 8, D. Ruelle had obtained the uniqueness results for infinite
range superstable potentials. Ruelle's method is to prove that the correla-
tions functions satisfy the Kirkwood�Salsburg equations. Then the unique-
ness of the solution of these equations implies the uniqueness of the Gibbs
measure. We do not know relations between the conditions we require
(Section 1) and superstability. Moreover we do not know if the potentials
we consider are stable (see ref. 5). Hence we do not know if the grand
canonical partition function exists for all finite volumes.

Fig. 1. The uniqueness region (under ;0(K0)).
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We requires that the potential function is positive near zero which
implies the existence of the grand canonical partition function for small
volumes in Rd (see Section 1). That is why we introduce a notion of
bounded specifications (Section 1). To prove the main theorem we check
the uniqueness conditions from ref. 4 (Sections 5 and 6). If the stability
property is fullfield then we can prove the existence of a unique Gibbs
measure as well (Section 7).

1. CONTINUOUS MODELS OF THE CLASSICAL GAS

1.1. Configuration Space and Reference Measure

We begin with definitions and notations. A configuration of our system
is a pair _=(x, n), where x is a countable subset in Rd and n is a map
n: x � [1, 2,...] such that for any bounded V/Rd

:
x # x & V

n(x)<� (1)

We denote by Xcont the set of all such configurations. We can interpret a
pair _=(x, n) in the following way. The set x is a set of points from
Rd where particles sit. For every x # x the number n(x) is the number of
particles sitting at x.

Let V be a Borel set in Rd. Then X V
cont is a set of configurations in V.

We use the following notations: xV=x & V and _V=(xV , nV), where
nV=n |xV

, is the restriction of _=(x, n) # Xcont to V. We say that
{=(y, m) # Xcont is included in _=(x, n) if y/x and m( y)�n( y) for y # y.
If y & x=<, then the union _ _ { is the configuration #=(z, l ), where
z=x _ y and for z # x _ y

l(z)={n(z),
m(z),

if z # x
if z # y

The empty configuration % is the configuration %=(<, 0), i.e. x=< and
n#0. We define _ & {=(w, k), where w=x & y and k(w)=min[n(w),
m(w)] for w # w. If x & y=< we write _ & {=%.

Let V be a bounded Borel subset in Rd and _=(x, n) # Xcont . The sum
�x # xV

n(x) is finite (see (1)) and we denote this sum by |_V |. We introduce
a _-algebra B on the configuration space Xcont generated by sets of the type

[_ # Xcont : |_V |=n] (2)
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for some n # Z+ and V/Rd (cylindrical sets). The reference measure & for
these sets is defined by the formula

&[_ # Xcont : |_V |=n]=
*(V )n

n !

where *(V ) is the Lebesgue measure of the set V in Rd. We can extend the
measure & to the whole _-algebra B using the equality

&[A (1)
n1

& A (2)
n2

]=&[A (1)
n1

] &[A (2)
n2

]

where

A(i)
ni

=[_ # Xcont : |_Vi
|=ni ], i=1, 2, V1 & V2=<

1.2. Conditional Energy

In the next subsection we introduce a Gibbs reconstruction of the
measure & given by a pair potential 8� (x, y): Rd_Rd � R. Our assumptions
on this function are following.

(i) The potential 8� (x, y) is of finite range: there exists a constant
D>0 such that for every (x, y) # Rd_Rd with |x& y|>D

8� (x, y)=0

(ii) Symmetry: 8� (x, y)=8� ( y, x) for all (x, y) # Rd_Rd

(iii) Translation invariance: for any (x, y) # Rd_Rd and any z # Rd

8� (x+z, y+z)=8� (x, y)

Therefore we can introduce the function 8(x), x # Rd, by the equality

8(x& y)=8� (x, y)

(iv) There exists a constant M>0 such that for any x # Rd

8(x)> &M

(v) There exist constants $0>0 and A>0 such that

A>8M \3+
2 - d D

$0 +
d
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and

8(x)�A if |x|�$0

This condition means that the repulsive part of the potential is greater than
the attractive one. This can be seen from the inequality A($0)d>CMDd

with C>(3+2 - d )d which implies (v). In fact this inequality is close to
(v). Note that if |8(x)| A � as |x| � 0 and � |x|<= 8(x) dx=� for =>0 then
(v) is satisfied.

(vi) sup |x|>$0
|8(x)|<�

We can assume that the constant M in (iv) is such that

sup
|x|>$0

|8(x)|<M

(vii) The function 8(x) is finite for all x except may be x=0.

Now we define the energy of a finite configuration _=(x, n) by the
formula

H(_)= :

x{ y
x, y # x

n(x) n( y) 8(x& y)+8(0) :
x # x \

n(x)
2 + (3)

where ( k
2)=k(k&1)�2. If n(x)#1 and |_|�2 then

H(_)= :

x{ y
x, y # x

8(x& y) (4)

For the case 8(0)=� it is clear that H(_)=�, if n(x)>1 at least for one
x # x. To simplify the notation we write

H(_)= :
x, y # _

8(x& y)

instead of (3). We also use the notation _/V which means that x/V,
where _=(x, n). If _ and { are finite configurations such that _ & {=<
then their interaction energy F(_, {) is defined as

F(_, {)=H(_ _ {)&H({)&H(_)= :

y # {
x # _

8(x& y) (5)
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where the sum in the right hand side is a simplified notation for
�x # _, y # { n(x) n( y) 8(x& y).

Let V be bounded Borel set and _ # X V
cont , { # X V c

cont , V c=Rd"V. By
the finite range property of the potential the configuration _ interacts only
with the finite part of {=(y, m) situated in the set

U=[ y # V c : inf
x # V

|x& y|�D] (6)

Therefore we have F(_, {)=F(_, {U).
The value

H(_ | {)=H(_)+F(_, {)

is called a conditional Hamiltonian (under condition {).

1.3. Specifications

A Gibbs specification [PV, { , V/Rd, { # X Vc

cont] is the following family
of Gibbs reconstruction of the measure & in finite volumes V given by the
conditional energy H(_ | {), inverse temperature ; # R+ and chemical
potential + # R. Let _/V, {/V c, then PV, { has the following density
pV, {(_) with respect to the measure &:

pV, {(_)=
exp[&;H(_ | {)++ |_|]

�XV
cont

exp[&;H(_ | {)++ |_|] &(d_)
(7)

It is clear that this distribution is well-defined if the integral in the
denominator is finite. The well-known stability condition: there exists a
constant R>0 such that for any _ with |_|<�

H(_)� &R |_| (8)

provides us with this property (see ref. 5). The integral in (7) is called the
partition function.

It is not clear if the conditions (i)�(vii) are sufficient for (8). Neverthe-
less we consider the potential functions 8 satisfying the properties (i)�(vii)
only and we avoid the correctness problem considering the densities (7) for
small volumes V only. Then the denominator of (7) is finite as follows from
two simple lemmas below.
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Lemma 1. Let a volume V be such that diam(V )<$0 . Then for
every _/V and {/V c

H(_ | {)>
A
4

|_|2&M |_| } |{U | (9)

where U is defined in (6).

Proof. We rewrite the energy in the form

H(_ | {)=H(_)+F(_, {) (10)

(see (3) and (5)). Since |_|<�

H(_)= :
x1 , x2 # _

8(x1&x2)�A \ |_|
2 +>A

|_|2

4

By our assumptions 8(x, y)�&M (see (iv)) hence we have

F(_, {)= :

y # {
x # _

8(x& y)>&M |_| |{U | K

Having (9) we obtain

Lemma 2. For V and { with the same properties as in Lemma 1 the
partition function

ZV, {=|
X V

cont

e&;H(_ | {)++ |_|&(d_)

is finite.

Proof. This integral can be written in the form

ZV, {#|
X V

cont

e&;H(_ | {)++ |_|&(d_)=1+ :
�

N=1

e+N |
XV

cont

e&;H(_ | {)&(d_)

where X N
cont=[_ # X V

cont : |_V |=N ]. The proof follows from (9). K

We introduce a bounded specification [PV, { : diam(V )<$0 , { # X V c

cont].
Further we shall omit the word ``bounded'' except for the cases which lead
to an ambiguity.
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A random point field !=[!V , V/Rd] corresponds to the specification
[PV, {] if

Pr(!V # A | !Vc={)=PV, {(A) (11)

for any bounded Borel set V/Rd and for any A�X V
cont .

A random point field !=[!V , V/Rd] corresponds to the bounded
specification [PV, { : diam(V )<$0] if

Pr(!V # A | !Vc={)=PV, {(A) (12)

for any bounded Borel set V/Rd with diam(V )<$0 and for any
A�X V

cont .

2. MAIN RESULT

We study uniqueness conditions for fields ! corresponding to the
specification [PV, {]. Let />0. We introduce a class A/ of random fields
! corresponding to a given specification [PV, {] such that

Ee/ |!V |<� (13)

for every bounded V�Rd such that diam(V )�$0 .

Theorem 3. Let the specification [PV, {] be defined by the poten-
tial function 8 and the conditions (i)�(vii) are satisfied for 8. Then for any
/>0 and any + # R there exists ;(/) such that for ;�;(/)

|A/ |�1

The symbol |A/ | means the number of elements in the set A/ .
The proof of Theorem 3 is based on the uniqueness theorem from

ref. 4 for lattice Gibbs models. In Section 4 we will show how to construct
a lattice model related to our system. This lattice model is equivalent with
respect of the uniqueness to the original continuous model introduced in
Section 1. For reader's convenience we in the next section quote the
theorem from ref. 4.

3. UNIQUENESS THEOREM ON ZD

Let S be a complete separable metric space, and V�Zd. A configura-
tion x� on V is a map x� : V � S, SV is the set of all configurations on V. Let
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[Pt, x� ] be the family of probability measures on S (a specification) indexed
by parameters t # Zd and x� # S Zd"[t].

A random field !(t), t # Zd, taking values in S corresponds to the
specification [Pt, x� ] if for every t # Zd and every Borel set A�S

Pr[!(t) # A | !(u)=x� (u), u{t]=Pt, x� (A)

Denote by

�t=[u # Zd : |u&t|�r]

the vicinity of the point t # Zd, where | } | is some norm in Zd and r>0.
We consider finite-range interactions. This means that there exists

r>0 such that for every pair of configurations x� 1 , x� 2 # SZd"[t] with
x� 1(u)=x� 2(u) for u # �t, the following equality is valid

Pt, x� 1
=Pt, x� 2

Let a be the number of elements in �t and Z0 be a subgroup of Zd such
that for any u, v # Z0 the inequality |u&v|>r is valid. We set

b=min
Z0

|Zd�Z0 |

where |Zd�Z0 | is the number of points in the quotient group Zd�Z0 .
The compact function is anon-negative continuous function h: S � R+

such that for any h0 # R+ the set

K(h0)=[x # S=h(x)�h0]

is compact in S.
Now we formulate a number of conditions on the specification [Pt, x� ]

required by the uniqueness theorem of ref. 4.

Compactness Condition. There exist a compact function h(x) on
S and constants C�0 and cu�0, u # �0, such that

C1. �u # �0 cu<1�ab;

C2. For any t # Zd and for any configuration x� # S Zd"[t]

|
S

h(x) Pt, x� (dx)�C+ :
u # �0

cuh(x� (t+u))

Given \<1 denote by 3(h, C, \) the class of all specifications satis-
fying this compactness condition with ab � cu�\.
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Contraction Condition. There exist a compact function h(x) on
S and constants K�0 and ku�0, u # �0, such that

D1. �u # �0 ku<1;

D2. For any t # Zd and for any pair of configurations x� 1 , x� 2 # SZd "[t]

such that

max[h(x� i (u)) : u # �t, i=1, 2]�K

the following inequality is valid

V(Pt, x� 1
, Pt, x� 2

)� :
u # �0

ku $(x� 1(t+u), x� 2(t+u))

where V(P, Q) is the variation distance between two measures P and Q,
and

$(x, y)={0, x=y
1, x{y

We denote by 2(h, K, :) the class of all specifications satisfying this con-
traction condition with � ku�:<1.

Let 1 # 3(h, C, \) & 2(h, K, :) and let Kh be the class of random fields
! on Zd with values in S corresponding to the specification 1 and satisfying
the condition

sup
t # Zd

Eh(!(t))<�

Theorem 4 (ref. 4). Let :, \ # (0, 1), C>0 and h be a compact
function. Then there exists a value K� =K� (C, a, b, :, \) such that for any
1 # 3(h, C, \) & 2(h, K, :) with K�K� the set Kh is either empty or consists
of a single-element.

The value K� indeed depends on C, a, b, :, and \. This can be seen
from the proof of the main theorem in ref. 4 (see Lemma 4 in ref. 4).

Note that the ``compactness condition'' (see the condition C1) is
stronger than the original Dobrushin's condition from ref. 3. Introducing
condition (C1)�(C2) one gains that the ``contraction condition'' (the condi-
tion D2) need to be checked for the boundary configurations belonging to
a compact only. This is the main advantage of the combination of both
conditions.
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In our applications of the above theorem we prove that for every + # R
and every K>1 the contraction condition is satisfied if ; is small. There-
fore we can apply the theorem even if no estimates on K� are known.

It is possible to give a lower estimate of K� . We will do this elsewhere.
Note that we need only one-point specification [Pt, x� ] in the theorem.

4. FROM CONTINUOUS TO LATTICE MODEL

In this section we explain how to construct a lattice model equivalent
to the continuous model of Section 1. Then one can apply the uniqueness
theorem from the previous section.

4.1. Spin Space

Partition the space Rd into equal cubes with edges parallel to coor-
dinate planes and index these cubes in natural way by the points of Zd. The
cube G0 containing the origin 0 # Rd is

G0=[x=(x(1),..., x(d )) # Rd : &g�x(i)<g, i=1,..., d ] (14)

So we have

Rd= .
t # Zd

Gt , Gt=G0+2gt

We will choose the parameter g such that diam(Gt)�$0 . This implies that
there is only a repulsive interactions inside any of Gt (see Section 1, the
condition (v)).

We take the set S=X G� 0
cont (G� 0 is the closure of G0) as a spin space. We

provide this spin space with the following metric. Let _=(x, n) and {=
(y, m) be particle configurations in S=X G� 0

cont and let x$=(x1 ,..., x |_|) be a
sequence of points from the set x such that each point xi # x is encountered
n(xi ) times in x$. Similarly, introduce y$=( y1 ,..., y |{|). The distance r(_, {)
between these configurations _=(x, n) and {=(y, m) is defined as follows

r(_, {)={
1

2g - d |_|
min

?
:
|_|

i=1

|xi& y?(i) |, if |_|=|{|
(15)

1, otherwise

In this formula the minimum is taken over the set of all permutations ? of
the set [1,..., |_|]. The metric space (S, r) is complete.
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4.2. Lattice Configuration Space Xlat

Define a lattice configuration _� as a map _� : Zd � S. By Xlat#SZd
we

denote the set of all lattice configurations. We can interpret every con-
figuration _� as a pair _� =(x� (t), n� t), where x� (t) is a finite subset in G� 0 and
n� t is a function nt : x� (t) � [1, 2,...].

Note that if t, s # Zd are nearest neighbors then it is possible that
x� (t) & x� (s){< since G� t & G� s{<.

4.3. Correspondence Between Continuous and
Lattice Configuration Spaces

A lattice configuration _� =(x� (t), n� t) # X lat corresponds to the con-
tinuous configuration _=(x, n) # Xcont if

x� (t)=x & Gt&2gt

and for x # x� (t)

n� t(x)=n(x+2gt)

where Gt=G0+2gt. Denote this correspondence by T: Xcont � Xlat . Hence
_� =T_=(x� (t), n� t) with x� (t)/G0/G� 0 . Therefore the range T(Xcont) is
strictly less than Xlat :

T(Xcont)/X lat

and T is an injective map.
The inverse map T&1 acts a follows. If _� =(x� (t), n� t) # T(Xcont) then

_=(x, n)=T&1_� is defined by

x= .
t # Zd

(x� (t)+2gt) (16)

Note that the sets x� (t) and x� (s) do not intersect for s{t and for any x # x
there exists only one point t # Zd such that x # x� (t)+2gt. This allows us to
define n:

n(x)=n� t(x&2gt)

The map T is a measurable imbedding. Hence every measure on Xcont

induce a measure on Xlat and thereby, each specification on Xcont generates
a specification for the lattice model. The inverse map T&1 can be extended
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from T(Xcont) to the whole Xlat . If _� =(x� (t), n� (t)) # Xlat"T(Xcont) then there
exist sites t # Zd such that some particles from x� (t) are situated at a point
x # x� (t) which is in G� 0 "G0 . Nevertheless defining T&1 for this case we can
use (16). To define n( } ) from n� t( } ) we put for x # x

n(x)= :
t: x # x� (t)+2gt

n� t(x&2gt)

4.4. Energy of a Lattice Configuration

We find the Hamiltonian of the lattice model using the Hamiltonian
of the continuous model. Let V�Zd be a finite volume and {� be a con-
figuration out of V.

Then the conditional energy H� (_� | {� ) of a configuration _� # Xlat on V
under the condition {� is equal

H� (_� | {� )=H((T&1_� )�t # V Gt
| (T&1{� )�t # V c Gt

where V c=Zd"V, (T&1_� )W is the restriction of the configuration
T&1_� # Xcont to the set W # Rd, and (T&1{� )W is defined similarly.

Let now V, W/Zd, V & W=<, be finite sets, _� be a configuration on
V and {� be a configuration on W. Then the interaction energy between _�
and {� is equal to

F� (_� , {� )=F((T&1_� )�t # V Gt
, (T&1{� )�t # W Gt

)

If u, v # Zd and dist(G� u , G� v)>D then for any configuration _� # Xlat

F� (_� (u), _� (v))=0

Hence it is naturally to define a boundary of a point t # Zd by the equality

�t=[u # Zd : dist(G� u , G� t)�D]

In the sequel we assume that the quantities a and b in Theorem 4 are
related to this definition of the boundary.

4.5. Reference Measure and Specifications in Lattice Model

Defining lattice specifications corresponding to the bounded specifica-
tions [PV, { : diam(V )<$0] we take the partitions on Rd by cubes [Gt]
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such that g<$0 �2 - d (see (v) and (14)). Then it follows from Lemma 2
that

ZG� 0, {
=|

X G� 0
cont

exp[&;H(_ | {)++ |_|] &(d_)<�

for any { # X G� c
0

cont , + # R and ;>0. Hence we can properly define the single-
point specification for the lattice counterpart of the continuous model.
Namely, the density pt, {� of Pt, {� is given by

pt, {� (_� )=
exp[&;H� (_� | {� )++ |_� |]

Zt, {�

where

Zt, {� =|
S

exp[&;H� (_� | {� )++ |_� |] &(d_� )=ZG� t, {

and _� =T_, {� =T{.
Note that Pt, {� and Zt, {� do not depend on t.
In the next sections we check the conditions of Theorem 4 for the lat-

tice specification [Pt, {� ]. It is clear from the construction in this section that
the uniqueness of the lattice model implies the uniqueness of the corre-
sponding continuous model. It is not difficult to show that the uniqueness
properties of both models are equivalent.

In the sequel when working with the lattice model we will omit the
bars over the letters H, _, { and etc.

5. COMPACTNESS CONDITION

In this section we prove that the compactness condition is satisfied
with the compact function h(_)=e/ |_| on S.

Lemma 5. There are constants C>0 and 0<c<1�ab+1 indepen-
dent on ; such that for every t # Zd and any boundary condition { # X Zd "[t]

lat

E{h=|
S

h(_) Pt, {(d_)�C+
c

ab+1 :
u # �t

h({(u))

Moreover, we can take

C=exp[e/++($0)d ]+
ab

2
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We would like to stress that the right hand side in the lemma of the above
inequality is independent on ;.

Proof. We use the representation

E{h= :
N�N{

|
S N

h(_) Pt, {(d_)+ :
N>N{

|
S N

h(_) Pt, {(d_) (17)

where

SN=[_ # S : |_|=N ] and S= .
�

N=0

SN

The real number N{ will be chosen later. First we estimate the second term
on the right hand side of (17). Since the partition function Zt, { is greater
than 1 we obtain

IN{
# :

N>N{

|
S N

h(_) Pt, {(d_)� :
N>N{

e(++/) N |
SN

e&;H(_ | {)&(d_)

� :
N>N{

e(++/) N exp {;N _M |{|&
A
4

N &= ($d
0)N

N !

where |{|=�u # �t |{(u)|. In the last inequality we used (9). Choosing
N{=(4M |{| )�A we have for all N>N{

M |{|�
A
4

N

This implies

IN{
� :

N>N{

e(++/) N ($d
0)N

N !
�exp[e/++$d

0]&1 (18)

Estimating the first term in (17) first we observe that

JN{
# :

N�N{

|
S N

h(_) Pt, {(d_)

= :
N�N{

h� (N ) Pt, {(SN)�h� (N{)=exp[/N{]
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where h� (k)=e/k. Hence

JN{
�e/(4M�A) |{| =exp {/

4M
A

:
u # �t

|{(u)|=
Next we use the inequality

`
n

i=1

x i�
1
n

:
n

i=1

xn
i (19)

which holds for any non-negative x1 ,..., xn . We obtain

JN{
�

1
a

:
u # �t

e/(4M�A) a |{(u)|

Recall that a=|�t|. Let T>0. Using (19) with n=2 we obtain

JN{
�

1
a

:
u # �t

eTe/(4M�A) a |{(u)|&T

�
1

2a
:

u # �t

e2T+
1

2a
:

u # �t

e&2Th� \8M
A

a |{(u)|+
By the convexity of the function h�

JN{
�

e2T

2
+

1
2a

:
u # �t

e&2Th� \_1&
8M
A

a& } 0+
8M
A

a |{(u)|+
�

e2T

2
+

1
2a

:
u # �t

e&2T {_1&
8M
A

a& h(%)+
8M
A

ah({(u))=
By simple evaluations, a�(2WD�2gX+1)d�(2 - d D�$0+3)d ), where WzX
is the least integer greater than or equal to z. Therefore assumption (v)
implies 1&8M�Aa>0, and the last fact as used above in the estimate
of JN{

. Now we have

JN{
�

e2T

2
+

e&2T

2 _1&
8M
A

a&+ :
u # �t

cuh({(u)) (20)

where

cu=
4Me&2T

A
for any u # �t (21)
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We set T= 1
2 ln[(4M�A) ab+1(1+=)] for choosing =>0 such that

(4M�A) ab+1(1+=)�1. Then

c=cu=
1

ab+1

1
1+=

(22)

It follows from (18) and (20) that

|
S

h(_) Pt, {(d_)�C+ :
u # �t

cu h({(u))

where

C=exp[e/++($0)d ]+
ab

2

�
e2T

2
+

e&2T

2 _1&
8M
A

a&+exp[e/++$d
0 ]&1 K (23)

6. CONTRACTION CONDITION

Lemma 6. Let K�1 and />0, and set K0=(1�/) ln K. For any
+ # R there exists ;0(K0) (see Fig. 1) such that for all ;: 0�;<;0(K0) and
for any t # Zd and {1 , {2 # S Zd"[t] such that

|{i (u)|<K0 , i=1, 2, u # �t

the following inequality for the variation distance is valid

V(Pt, {1
, Pt, {2

)< :
u # �t

ku&t$({1(u), {2(u)) (24)

where ku=:�a for all u # �0 and some :<1.

Proof. Because of the translation invariance of the potential we can
perform all our calculations for t=0 # Zd. Therefore we omit t from all sub-
scripts in this proof. Take {1 , {2 # S Zd "[0] and assume that {1(u0){{2(u0)
for u0 # �0 and {1(u)={2(u) for u # �0, u{u0 and |{2(u0)|=|{1(u0)|+1.
Moreover we assume that for {1(u0)=(x1 , n1) and {2(u0)=(x2 , n2) either
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x2=x1 _ [ y0], where y0 # G� 0 , y0 � x1 and n2( y0)=1, or x2=x1 and for
some y0 # x2 n2( y0)=n1( y0)+1. Consider the variation distance

V(P{1
, P{2

)= 1
2 |

S
| p{1

(_)& p{2
(_)| &(d_)

= 1
2 :

�

N=0
|

S N
| p{1

(_)& p{2
(_)| &(d_)

where

S= .
�

N=0

SN, S N=[_ : |_|=N ]

Thus

V(P{1
, P{2

)�
1
2

:
�

N=0

e +N |
SN } e

&;H(_ | {1)

Z{1

&
e&;H(_ | {2)

Z{2
} &(d_)

If N=0 then H(_ | {i )#H(% | {i )=0, where % is an empty configura-
tion. We have

} 1
Z{2

&
1

Z{1
}= }

Z{1
&Z{2

Z{1
Z{2

}�|Z{2
&Z{1

|

since for any {

Z{=1+ :
�

N=1

e +N |
S N

e&;H(_ | {)&(d_)�1

Therefore

} 1
Z{1

&
1

Z{2
}�|Z{2

&Z{1
|

� :
�

N=1

e +N |
SN

|e&;H(_ | {1)&e&;H(_ | {2)| &(d_) (25)

For _ # SN if N�1 we have

} e
&;H(_ | {1)

Z{1

&
e&;H(_ | {2)

Z{2
}�|Z{2

e&;H(_, | {1)&Z{1
e&;H(_ | {2)| (26)
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It follows from (25) and (26) that

V(P{1
, P{2

)

� :
�

N=1

e +N |
SN

|e&;H(_ | {1)&e&;H(_ | {2)| &(d_)

+ 1
2 :

�

N=1

:
�

N$=1

e +(N+N$) |
S N |

S N$

_|e&;H(_ | {1)&;H(_$ | {2)&e&;H(_ | {2)&;H(_$ | {1)| &(d_) &(d_$)

Observe that

H(_ | {2)=H(_ | {1)+ :
x # _

8(x&( y0+2gu0))

Using this and a simple inequality

|e&; �x # _$ 8(x&( y0+2gu0))&e&; �x # _ 8(x&( y0+2gu0))|

�|1&e&; �x # _$ 8(x&( y0+2gu0))|+|1&e&; �x # _ 8(x&( y0+2gu0))|

we obtain

V(P{1
, P{2

)

� :
�

N=1

e +N |
SN

e&;H(_ | {1) |1&e&; �x # _ 8(x&( y2+2gu0))| &(d_)

+ :
�

N=1

:
�

N$=1

e +(N+N$) |
SN

e&;H(_ | {1)&(d_)

_|
SN$

e&;H(_$ | {1) |1&e&; �x # _$ 8(&( y0+2gu0))| &(d_$)

�Y{1
( y0) Z{1

(27)

where

Y{1
( y0)= :

�

N$=1
|

SN$
e&;H(_$ | {1)++N$

_|1&e&; �x # _$ 8(x&( y0+2gu0))| &(d_$) (28)
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It follows from Lemma 1 that

Z{1
�exp[e ++;MK0 a(2g)d ] (29)

Estimating (28) we use Lemma 1 again:

|
S N

e&;H(_$ | {1)++N |1&e&; �x # _$ 8(x&( y0+2gu0))| &(d_$)

�
1

N !
e;MK0 aN++NJN(;)

where

JN(;)=|
G�

0
N

|1&e&; �N
i=1 8(xi&( y0+2gu0))| dx1 } } } dxN (30)

We divide the cube G� 0 into two parts

G� 0=G� (1)
0 _ G� (2)

0

where

G� (1)
0 =[x : x # G� 0 , |x&( y0+2gu0)|>$0]

and

G� (2)
0 =[x : x # G� 0 , |x&( y0+2gu0)|�$0]

Then

JN(;)=:
:

J :
N(;) (31)

where the sum is taken over multi-indices :=(:1 ,..., :N), :i is equal to
either 1 or 2, and J :

N(;) is the integral of the same function as in (30) taken
over the region G� (:)

0 =G� (:1)
0 _G� (:2)

0 _ } } } _G� (:N )
0 .

Next we estimate every term in (31). For :=(:1 ,..., :N) let I 1
N, :=

[i : 1�i�N, :i=1] and I 2
N, :=[1,..., N ]"I 1

N, : . We apply the inequality

|1&Ce&�N
k=1 ak|� :

N

k=1

|1&e&ak|+|1&C |
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valid for any C�0 and ak�0, k=1,..., N. Since 8(x&( y0+2gu0))>0 for
x # G (2)

0 we have

|1&e&; �N
i=1 8(xi&( y0+2gu0))|

� :
i # I 2

N, :

|1&e&;8(xi&( y0+2gu0))|+|1&e&; �N
i # I 1

N, :
8(xi&( y0+2gu0))| (32)

Using the Newton�Leibniz formula we obtain the following inequalities for
the second term on the right side in (32)

} 1&exp {&; :
i # I 1

N, :

8(x i&( y0+2gu0))= }
=; |

1

0 } :
i # I1

N, :

8(xi&( y0+2gu0)) }
_exp {&;s :

i # I1
N, :

8(xi&( y0+2gu0))= ds

�;MN |
1

0
e;sMN ds�;MNe;MN (33)

In the last two inequalities we used the obvious relation N�|I 1
N, : |.

It follows from (32) and (33) that

} 1&exp {&; :
N

i=1

8(xi&( y0+2gu0))= }
� :

i # I2
N, :

|1&exp[&;8(xi&( y0+2gu0))] |+;MNe;MN

Newt we obtain

JN(;)�2NN(2g) (N&1) d J1(;)+;2NMN(2g)Nd e;MN (34)

combining (27), (29), (31), and (34) we obtain

V(P{1
, P{2

)�e;MK0a+;M++exp[3(2g)d e;MK0a+;M++]

_[J1(;)+;M(2g)d] (35)

Let

F;(x)=|1&e&;8(x&( y0+2gu0))|
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for x # G� 0 then

lim
; � 0

F;(x)�{0, if x{ y0+2gu0

1, if x= y0+2gu0

Note that lim; � 0 F;( y0+2gu0)=0 in the case 8(0)<�. Since

F;(x)�2

for ; small enough by the Lebesgue convergence theorem we obtain that

lim
; � 0

J1(;)= lim
; � 0 |G� 0

F;(x) dx=0

at fixed + # R. Moreover, it is easy to see that

lim
; � 0

sup
y0 # G� 0

J1(;)=0 (36)

Therefore for any {1 , {2 satisfying conditions of the lemma

lim
; � 0

V(P{1
, P{2

)=0

Hence there exists ;0(K0)>0 such that for ;�;0(K0)

V(P{1
, P{2

)<
1

2K0 a
(37)

Observe that ;0(K0) is independent on the boundary conditions {1 and {2

because of (36). Let 0<#<1�2K0a. Suppose that ;0(K0) is chosen such
that

V(P{1
, P{2

)<#

for every pair {1 , {2 different from each other by one particle.
Next let {1 and {2 be such that {1(u0){{2(u0) and {1(u)={2(u) if

u{u0 . It is easy to find a sequence of configurations _k(u), k=0,...,
T=|{1(u0)|+|{2(u0)|&|{1(u0) & {2(u0)| such that

1. _0(u0)={1(u0) and _T (u0)={2(u0);

2. |_k(u0)|�max[ |{1(u0)|, |{2(u0)|] for every k;

3. for every k the configurations _k(u0) and _k+1(u0) differ by one
particle;

4. for u{u0 and every k_k(u)={i (u).
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Then for ;�;0(K0)

V(P{1
, P{2

)� :
T

i=1

V(P_i
, P_i+1

)�T#<
1
a

Finally, we consider a general case of {1 and {2 . Let _0 ,..., _n , n�a,
be a sequence of configurations with the properties

(1) _0={1 , _n={2 ;

(2) _k and _k+1 differ only at one site, i.e. for every k there exists
uk # �0 such that _k(uk){_k+1(uk) and _k(u)=_k+1(u) for all u{uk ;

(3) for every u # �0 and every k_k(u)=_k+1(u) if {1(u)={2(u).

Let # be as in (36). We set :$=T#<1�a and ku=:$. Then for
;�;0(K0)

V(P{1
, P{2

)� :
n

k=1

V(P_k
, P_k+1

)� :
u # �0

ku$({1(t+u), {2(t+u))

and := :
u # �0

ku=:$a<1. K

7. UNIQUENESS

7.1. Uniqueness

The proof of Theorem 3 follows now from Lemmas 5 and 6 and the
construction of the Section 4. As we can see from Lemma 5 and its proof
the constants C and c are independent on ; (see (22), (23)). Therefore
\=ab+1c is independent on ; as well and is equal to 1�1+= where =>0
(see Section 5).

As in Lemma 6 we consider an arbitrary K�1 and set K0=(1�/) ln K.
It can be seen from the proof of Lemma 6 that for every K0 we can find
;0=;0(K0) such that (24) holds with �u # �0 ku<1. We chose K0 such that
e/K0�K� .

Then the condition of Theorem 4 are satisfied. K

7.2. Existence and Uniqueness

Further in this section we assume that the stability condition (8) is
satisfied. This ensures the finiteness of the denominator in (7) for any
bounded V. Nevertheless the compactness conditions (Lemma 5) are not
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sufficient to provide the existence of at least one Gibbs field corresponding
to the specification [Pt, {]. To have the existence we have to check a con-
tinuity property of the specification (see refs. 3 and 7).

Lemma 7. Let { be a boundary configuration on Zd"[t] and let
({n) be a sequence of configurations on Zd "[t] which converges to {. Then
the measures Pt, {n

weakly converge to the measure Pt, { .

We assume that the convergence {n � { means that {n(u) � {(u) for
every u.

Proof. We consider t=0 only. First we prove the convergence of
corresponding partition functions. Namely

|Z{n
&Z{ | � 0 as n � � (38)

We show that for every N

|
SN

|e&;H(_ | {n)&e&;H(_ | {)| &(d_) � 0 (39)

as n � �. Since {n � { in the sense of the metric (15) then |{n�t |=|{�t |,
where |{n�t | and |{�t | are the numbers of particles in the restriction to �t
of the configurations {n and {. Let T be this number, and let y$n=
( yn1 ,..., ynT) and y$=( y1 ,..., yT) be the sequences of co-ordinates in �t
where particles of {n�t and {�t are localized. Recall that every coordinate is
repeated in the sequence as many times as in the number of particles which
are situated in this point. We can choose a numeration in the sequences y$n
and y$ such that for every iyni � y i . Then (39) is equivalent to

|
G� 0

N
|e; �T

i=1 �N
j=1 8(xj&( yni+2gui))&e&; �T

i=1 �N
j=1 8(xj&( yi+2gui))|

_dx1 } } } dxN � 0 (40)

where ui # �0 is such that yni , y i # {(u i ). It is easy to see that

e&; �T
i=1 �N

j=1 8(xj&( yni+2gui)) � e&; �T
i=1 �N

j=1 8(xj&( yi+2gui))

as n � �. That gives (40) and (39).
To obtain (38) observe that for any =>0 there exists N= such that for

all n

Z{n� :
N=

N=0

e +N |
SN

e&;H(_ | {n)&(d_)+= (41)
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and

Z{� :
N=

N=0

e +N |
SN

e&;H(_ | {)&(d_)+= (42)

Now (38) follows from (40), (41) and (42) and the Lemma assertion is a
simple consequence of (38). K

Next we give a new form of the main theorem, which is a little
stronger. Recall that we require the stability condition.

Theorem 8. Let the specification be defined by the potential func-
tion 8 satisfying the conditions (i)�(vii) and the stability condition (8).
Then for every + # R there exists ;1>0 such that for ;�;1 there exists
exactly one Gibbs measure m corresponding to the specification and such
that for any volume V with diam(V )<$0

Ee/ |_V |<�

for all />0.

Proof. Let 0</1</2 . Then it follows from Theorem 3 and
Lemma 7 that |A/1

|=1 if ;�;(/1) and |A/2
|=1 if ;�;(/2). Let

A/i
=[mi ], i=1, 2. For ;�;$0=min[;(/1), ;(/2)] the inequalities

Em1
e/1 |_V |<� and Em2

e/2 |_V |<�

hold if diam(V )�$0 . Here Emi
means the expectation with respect to the

measure mi . Since /1</2 we have

Em2
e/1 |_V |�Em2

e/2 |_V |

The equality |A/1
|=1 implies that m1=m2 . It means that there exists the

unique measure m for ;�max[;(/1), ;(/2)]. Therefore there exists the
unique measure in the region

;�;1=sup
/�0

;(/) K

2.3. Uniqueness Region

The proposition below gives a lower estimate of the function
;1=;1(+) for negative values of +.
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Proposition 9. For any

:<&
1

M(aK0+1)

the inequality

lim
+ � &�

;1(+)
:+

�1

holds.

Proof. The proof follows from (35), since V(Pt, {1
, Pt, {2

) has to be less
than 1�2a (see (37)). K

For non-negative potential functions 8(x)�0 the uniqueness region
has the part where the uniqueness property holds for all temperatures.

Lemma 10. If 8(x)�0 for any x # Rd then for all ;�0 and for any
{1 , {2 # S Zd"[t] the following inequality is valid

V(Pt, {1
, Pt, {2

)<const(exp[e +($0)d ]&1)

Proof. In the formula for the variation distance

V(Pt, {1
, Pt, {2

)= :
�

N=0
|

SN
| pt, {1

(_)& pt, {2
(_)| &(d_)

we can replace the difference by the sum:

V(Pt, {1
, Pt, {2

)� :
2

i=1

:
�

N=0
|

SN
pt, {i

(_) &(d_)

� :
2

i=1

:
�

N=1

e +N |
SN

e&;H(_ | {i)&(d_)

If 8(x)�0 then H(_(t) | {)�0 and we then obtain

V(Pt, {1
, Pt, {2

)�const :
2

i=1

:
�

N=1

e +N |
SN

&(d_)

=const(exp[e +($0)d ]&1) K
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Fig. 2. The uniqueness region for the case of non-negative potential 8.

It follows from this lemma that we can choose +0 such that for all
+�+0 and for all ;�0 the variance distance V(Pt, {1

, Pt, {2
) will be suf-

ficiently small. Thus, in the case of repulsive interactions we have the
uniqueness of Gibbs fields for all temperatures ; provides +�+0 (see
Fig. 2).
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